

What is light?

- Particles?

Newton, early 1700s:

geometric optics, reflection, refraction

- Waves?

Huygen, 1700 + Young, early 1800s

interference, diffraction, wavelets,
superposition

by mid 1800s, wave theory was dominating
over particle theory

By end of 1900's everything changed!

Black body problem

Imagine a body that is heated up to some temp

\Rightarrow keep the temperature constant

\Rightarrow look at the distribution of light given off

\Rightarrow there will be different intensities of light of
different frequencies (colors)

This should be familiar: heat something up,
color changes

as temp \uparrow , freq of light given off \uparrow (bluer)

example: Sun surface temp is 5000-6000 K

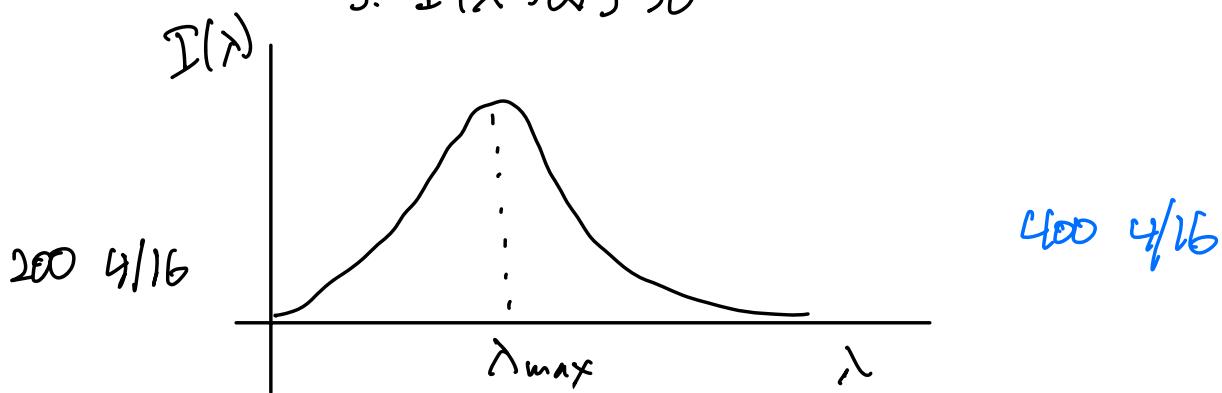
energy peaks around $\lambda = 550 \text{ nm}$

But there is some light intensity at all frequencies

So expect: 1. $I(\lambda)$ peaks at λ_{\max}

2. $I(\lambda \rightarrow 0) \rightarrow 0$

3. $I(\lambda \rightarrow \infty) \rightarrow 0$



Ideal body will absorb all frequencies

\Rightarrow so the $I(\lambda)$ given off only depends on temp T

so $I = I(\lambda, T)$

this ideal body is called a "black body"

because it absorbs everything, no reflections

At constant T, it is in equilibrium ($E_{\text{in}} = E_{\text{out}}$)

Can build such a thing by a hollow cavity with a pin hole for energy to get in (won't escape out)

Then EM radiation out goes thru surface



\Rightarrow Surface radiation is in equilibrium with radiation inside cavity

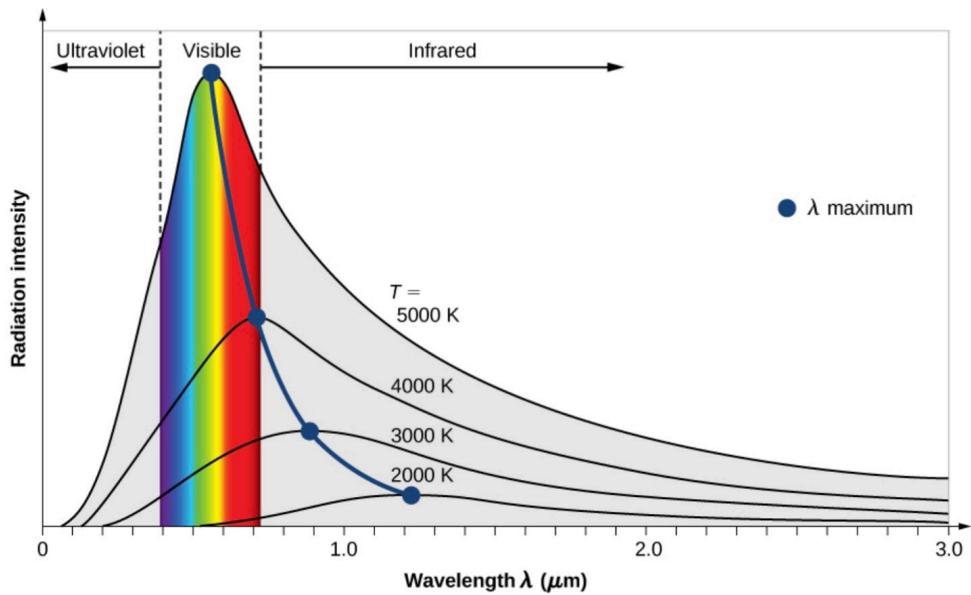
$\Rightarrow I(\lambda, T)$ is intensity vs wavelength for a fixed temperature T

\Rightarrow this is "black body radiation"

By late 1800s, technology allowed accurate measuring of black body spectrum

\Rightarrow especially using telescopes to measure spectrum of stars

Here is what was measured:



Note: intensity peak wavelength depends on temp
as T increases, peak λ decreases

From experiment (plot above) we have Wien's law:

$$\lambda_{\max} T = 2.898 \times 10^{-3} \text{ m} \cdot \text{K} \quad \text{for visible range} \quad \lambda_{\max}$$

ex: Sun's energy peaks at $\lambda \sim 500 \text{ nm}$ yellow

$$T_{\text{Sun}} = \frac{2.898 \times 10^{-3} \text{ m} \cdot \text{K}}{500 \times 10^{-9} \text{ m}} = 5800 \text{ K}$$

Stefan's law: relates power radiated per temp

Power radiated: integrate over all wavelengths

remember Intensity $I = \frac{\text{Power}}{\text{area}}$ so Power = $I \cdot \text{Area}$

$$\text{Stefan's law: } \frac{P(T)}{A} = \sigma T^4 \Rightarrow \sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$$

so $P(T) = \sigma A T^4$ $A = \text{surface area of the body radiating}$

$$\text{ex: } T_{\text{sun}} = 5800 \text{ K}$$

$$\text{so } I(5800) = 5.67 \times 10^{-8} \frac{W}{m^2 K^4} \times (5800)^4 \\ = 64 \times 10^6 \frac{W}{m^2}$$

$$\text{Radius} = 7 \times 10^8 \text{ m}$$

$$\text{surface area } A = 4\pi r^2 = 4\pi \times (7 \times 10^8 \text{ m})^2 = 4.9 \times 10^{17} \text{ m}^2$$

$$\text{so power radiated } P = I \cdot \text{Area}$$

$$= 64 \times 10^6 \frac{W}{m^2} \times 4.9 \times 10^{17} \text{ m}^2 \\ = 3.1 \times 10^{25} \text{ W}$$

So... $I(\lambda)$ for different temperatures is **VERY weird** given what was known about EM radiation:

1. EM energy is in periodic waves

2. for EM waves energy \propto amplitude²

but here,

\Rightarrow as T increases, total energy absorbed is larger

\Rightarrow what is measured is that larger energy (higher T) means shorter wavelengths

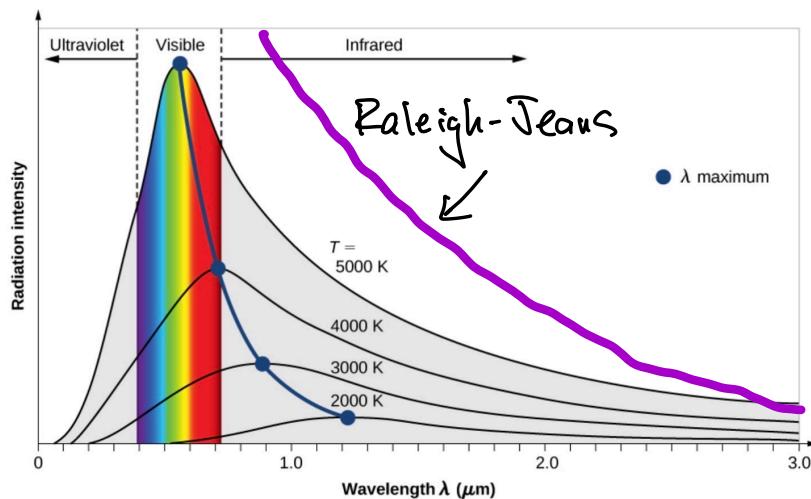
\Rightarrow since $\lambda f = c$, shorter λ = longer f

so larger $E = \text{larger } f \text{ E}_\text{Hff}?$

What is black body problem in late 19th cent?

how to calculate black body spectrum using what was known about thermodynamics and EM radiation

Raleigh-Jeans: published 1st attempt in 1900



Raleigh-Jeans does not fit!

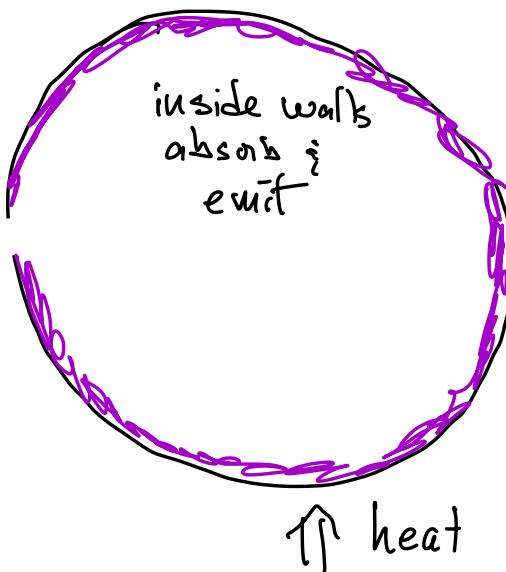
⇒ especially at shorter wavelengths

⇒ predicts infinite intensity at short wavelengths
= high frequencies

Something is seriously wrong with our basic understanding!

Max Planck : 1900 published a result that DID fit

1. imagine a black body cavity
⇒ energy in is from heat
⇒ comes to equilibrium, so temp is constant
⇒ the only radiation emitted is through the hole
so cavity walls are absorbing E_{in} and emitting E_{out}
and $E_{in} = E_{out} \Rightarrow$ constant temp T



2. the way the walls emit: oscillators in the walls!
⇒ atoms, but not known in 1900

Planck said that the oscillators emit EM waves
but only at discrete values, not continuous!!

⇒ oscillators emit energy by transitioning from
a higher to lower energy

$\Delta E = E_{\text{high}} - E_{\text{low}}$ are constrained to be proportional to frequency of the radiation

$\Delta E \propto hf$ where h is a constant

\Rightarrow note this is consistent with Wien's law:

heat \Rightarrow temp and $T \propto \frac{1}{\lambda_{\text{peak}}} = \frac{f_{\text{peak}}}{c}$

so $E_{\text{radiation}} = n hf$ $n = \text{integer}$

this is completely new \rightarrow classical EM say all frequencies are possible

Planck says no, (reg of) radiation in cavities is discrete ('discontinuous')

\Rightarrow Birth of quantum science

constant $h = \text{Planck's constant}$

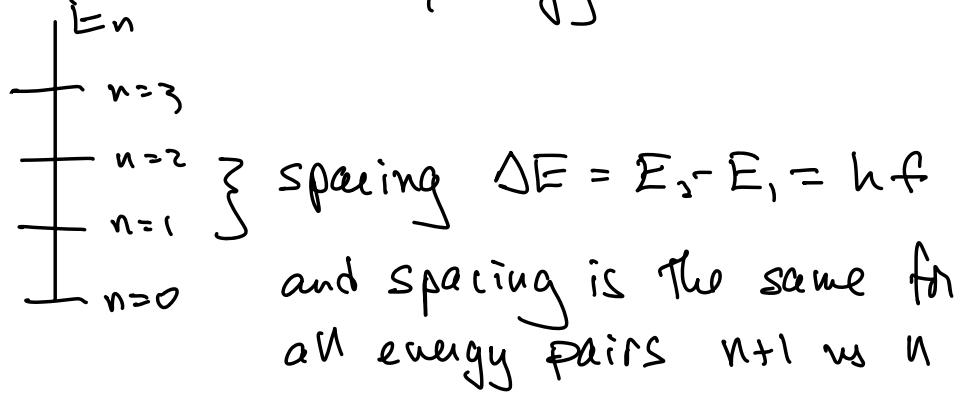
measured to be $6.63 \times 10^{-34} \text{ J-s}$

using this, Planck calculate black body spectrum

$$I(\lambda, T) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda k_B T} - 1}$$

$k_B = \text{Boltzmann's constant } 1.38 \times 10^{-23} \text{ J/K}$

so atoms are oscillators w/energy "levels"



ex: classical oscillator, mass on spring

$$\text{mass } m \quad \omega = \sqrt{\frac{k}{m}}$$

$$hf \quad k = 100 \text{ N/m} \\ m = 1 \text{ kg}$$

$$\omega = \sqrt{\frac{k}{m}} = 10 \frac{\text{rad}}{\text{sec}} = 2\pi f$$

$$\text{so } f = \frac{10}{2\pi} \text{ Hz} = 1.6 \text{ Hz}$$

if this were a quantum system, the oscillators would have energy spacing

$$\Delta E = hf = 6.63 \times 10^{-34} \text{ Js} \cdot 1.6 \text{ Hz} \\ = 10.6 \times 10^{-34} \text{ J}$$

minuscule amount of energy

\Rightarrow tells you that quantum effects are hard to see in classical situations

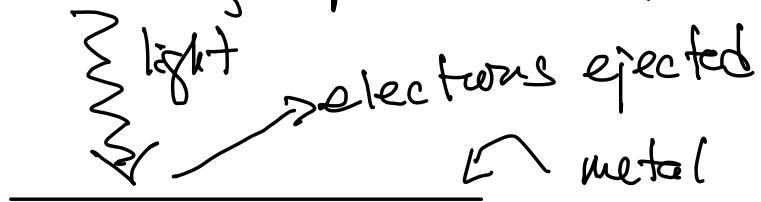
Plank's result was met with skepticism for 5-10 years until:

Photoelectric effect

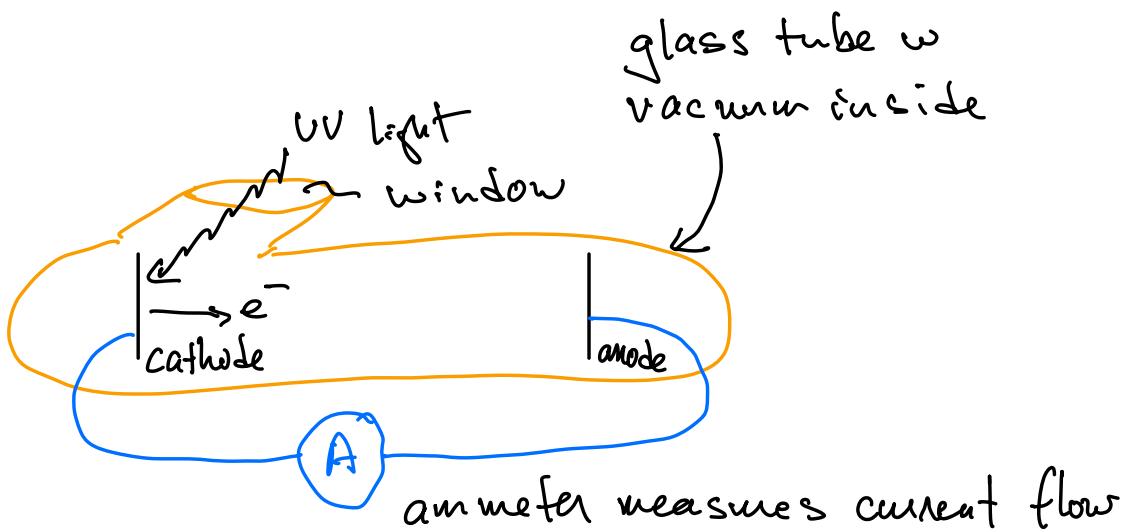
1839, Becquerel discovered photovoltaic effect

→ light on some materials generates voltages

late 1800s, experiments with metals:



Philipp Lenard experiment, 1900 (Nobel 1905)
(1862-1947)



\Rightarrow shine UV light onto cathode, registers a current in the ammeter

saw that: no light, no current

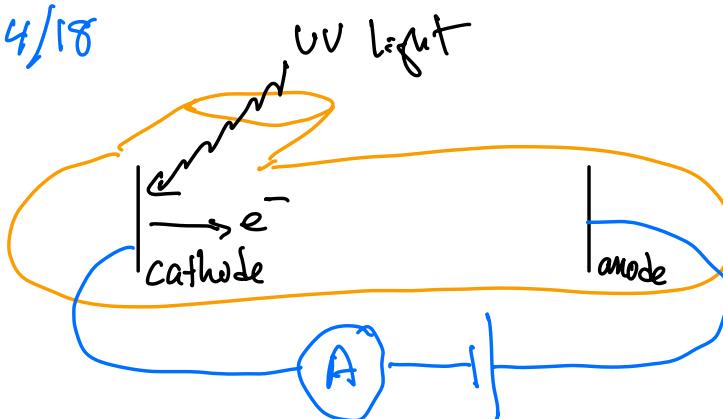
\Rightarrow current in space between electrodes must be same as current in the wires thru meter

can measure intensity of current I_c vs intensity of light I_L

finds that: $I_c \propto I_L$

now add battery to circuit

200 4/18



bias so anode is at $+V$
relative to cathode

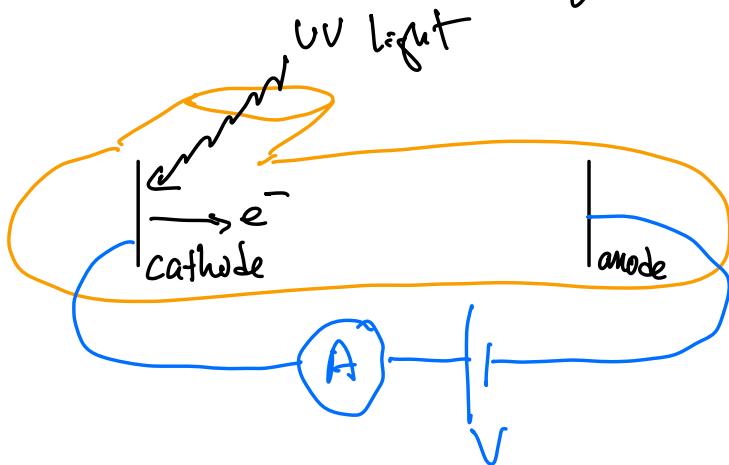
\Rightarrow this will accelerate electrons to anode

Energy gained by electrons: $\Delta E = eV$

However, Lenard observed that the current thru the ammeter did not change with increasing voltage

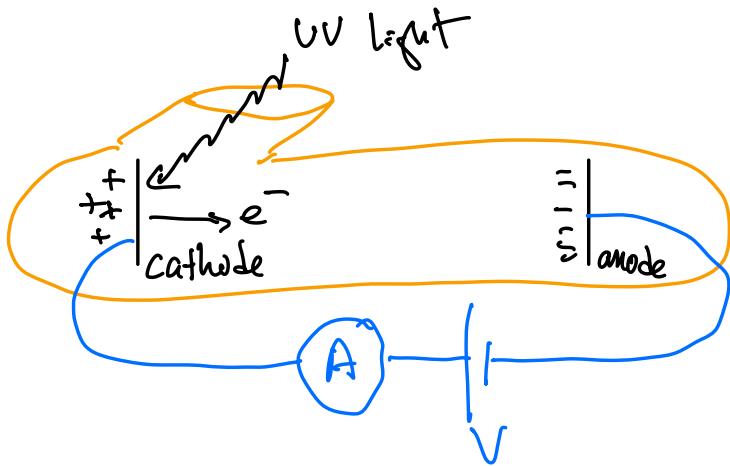
but still observed $I_c \propto I_L$
⇒ more light, more current

Next reverse polarity of battery



Here, electrons would have to overcome anode repulsion

⇒ Because battery is pumping + charges to cathode!



electrons will need $KE \geq eV$ to get to anode

⇒ Lenard observed that as V increases, current dropped

but can make up for it by increasing light current

However: only up to some voltage V_s
(stopping voltage)

and, no matter how much you crank up light intensity I_L , still no current as long as $V > V_s$!

⇒ This implies that KE of ejected electrons is not proportional to light intensity!

Nest he had increase light frequency
and found current I_c turned on!

so $I_c \propto f_{\text{light}}$ when $V > V_s$

this implies that KE of electrons ejected
is proportional to the light frequency
and not light intensity

Problems w/ "classical" picture of photo-electric
effect

1. at some stopping voltage, current $\rightarrow 0$
expect current to reappear by increasing
light intensity

result:

- current intensity does not depend
on light intensity
- current reappears by raising light
frequency

2. it takes some energy ("work function", ϕ)
to free an electron from the metal surface

\Rightarrow any electron would have to absorb energy from light intensity to build up enough to get free

\Rightarrow therefore there should be a delay between seeing a current & turning on light

Result: no delay seen - current intensity appears \rightarrow immediately!

Note on units

Since $h = 6.63 \times 10^{-34} \text{ J}\cdot\text{s}$ is so small, energies in joules will be small

ex: visible light has $\lambda = 500 \text{ nm} = 500 \times 10^{-9} \text{ m}$

$$c = \lambda f \text{ so } f = \frac{c}{\lambda} = \frac{3 \times 10^8 \text{ m/s}}{500 \times 10^{-9} \text{ m}} = 6 \times 10^{14} \text{ Hz}$$

energy associated with this "photon"

$$E = hf = 6.63 \times 10^{-34} \text{ J}\cdot\text{s} \times 6 \times 10^{14} / \text{s}$$
$$= 4 \times 10^{-19} \text{ J} \text{ small!}$$

Remember from static electricity:

charge Q going thru potential diff of ΔV

picks up or loses energy $E = Q\Delta V$

Q for proton: $e = 1.6 \times 10^{-19} \text{ coulombs}$

$$\text{if } \Delta V = 1 \text{ volt, } E = 1.6 \times 10^{-19} \text{ C} \cdot 1 \text{ V} = 1.6 \times 10^{-19} \text{ J}$$

lets define new unit: electron volt =
energy of charge e thru 1 volt

then $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$ converts Joules to eV

then our $6 \times 10^{14} \text{ Hz}$ photon has energy:

$$E = 4 \times 10^{-19} \text{ J} * \frac{1 \text{ eV}}{1.6 \times 10^{-19} \text{ J}} = 2.5 \text{ eV} \text{ nice unit!}$$

Now know use eV for particles, atoms, etc.
Work function for most atoms that can emit electrons

Na	Sodium	2.36
Al	Alum.	4.06-4.26
Pb	Lead	4.25
Zn	Zinc	3.6-4.9
Fe	Iron	4.6-4.8
Cu	Copper	4.5-5.1
Si	Silicon	4.6-4.9
C	Carbon	5.0
Ag	Silver	4.2-4.7
Ni	Nickel	5.0-5.4
Au	Gold	5.1-5.5

units of eV

note all work functions
are ~ few eV

Resolution: Einstein, 1905

1. Photons are particles

2. Energy of photon \propto photon frequency:

$$E = hf \quad h \equiv \text{Planck's constant}$$

as proposed
by Planck
in 1900

$$h = 6.63 \times 10^{-34} \text{ J-s}$$

3. each electron absorbs single photon and gains energy $E = hf$

to get to anode w/ stopping voltage V_s and work function ϕ :

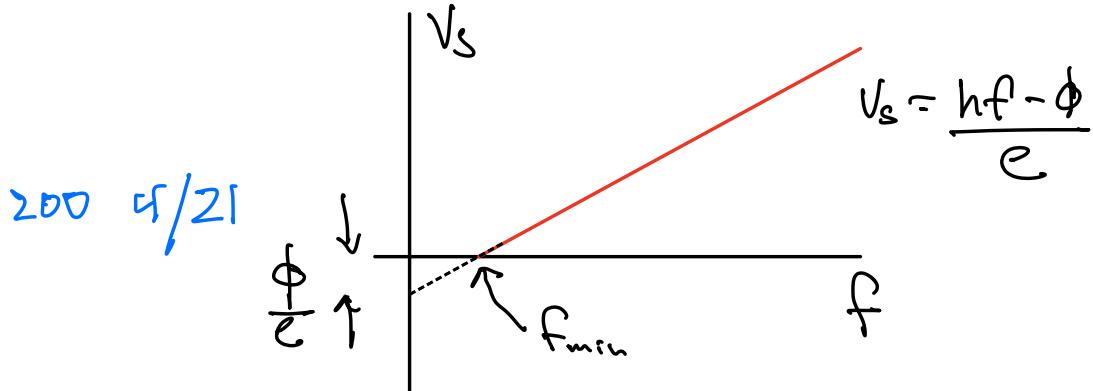
$$KE = hf - \phi \geq eV_s$$

experiment to do

1. shine light w/ some frequency f

2. find V_s that causes zero current

3. vary f , measure V_s , plot:



- Positive slope gives $\frac{h}{e}$
- y-intercept gives $V_s(f=0) = -\phi/e$

Verified! Theory fit the data!

ex: light $\omega/\lambda = 400\text{nm}$

$$c = \lambda f \text{ so } f = c/\lambda$$

$$E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \text{ J-s} \times 3 \times 10^8 \text{ m/s}}{400 \times 10^{-9} \text{ m}} \\ = 5.0 \times 10^{-19} \text{ J small!}$$

$$\text{then in eV, } E = 5 \times 10^{-19} \text{ J} \times \frac{1 \text{ eV}}{1.6 \times 10^{-19} \text{ J}} = 3.1 \text{ eV}$$

so 400nm is not going to eject electrons except in sodium

\Rightarrow usually we want to go from wavelength to energy

$$E = hf \quad \text{and} \quad f = c/\lambda$$

$$\text{so } E = \frac{hc}{\lambda}$$

we want to use λ in nm and E in eV
so calculate hc in eV-nm

$$hc = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} \times 3 \times 10^8 \frac{\text{m}}{\text{s}} = 1.989 \times 10^{-25} \text{ J} \cdot \text{m}$$

$$hc = 1.989 \times 10^{-25} \text{ J} \cdot \text{m} \times \frac{1 \text{ eV}}{1.6 \times 10^{-19} \text{ J}} \times \frac{1 \text{ nm}}{10^{-9} \text{ m}} = 1243 \text{ eV-nm}$$

use
$$hc = 1243 \text{ eV-nm}$$

ex: light w/wave length 600 nm has energy

$$E = \frac{hc}{\lambda} = \frac{1243 \text{ eV-nm}}{600 \text{ nm}} = 2.1 \text{ eV}$$

ex: what is maximum wavelength of light that can eject electrons from Na and Au?

$$\text{for Na, } \Phi = 2.36 \text{ eV}$$

$$\text{Au } \Phi = 5.2 \text{ eV}$$

KE of ejected electrons: $KE = E_\gamma - \Phi$

incident photon energy
 \downarrow
 energy needed
 \rightarrow to get out
 of material

$$\text{minimum KE} = 0 \text{ so } E_\gamma - \Phi = 0$$

$$E_\gamma = hf_{\min} = \frac{hc}{\lambda_{\max}} = \phi \quad \lambda_{\max} = \frac{hc}{\phi}$$

for Na $\lambda_{\max} = \frac{1243 \text{ eV} \cdot \text{nm}}{2.36 \text{ eV}} = 540 \text{ nm}$ green

for Au $\lambda_{\max} = \frac{1243 \text{ eV} \cdot \text{nm}}{5.2 \text{ eV}} = 241 \text{ nm}$ UV

ex: $\lambda = 300 \text{ nm}$ photons hit Na
what is KE of electrons ejected?

$$\begin{aligned} KE = hf - \phi &= \frac{hc}{\lambda} - \phi = \frac{1243 \text{ eV} \cdot \text{nm}}{300 \text{ nm}} - 2.36 \text{ eV} \\ &= 4.14 \text{ eV} - 2.36 \text{ eV} = 1.78 \text{ eV} \end{aligned}$$

$$KE = 1.78 \text{ eV}$$

if mass of electron is $9.1 \times 10^{-31} \text{ kg}$, what is velocity?

rest energy of electrons $E_0 = m_0 c^2 = 511 \text{ keV}$

here $KE \ll E_0$ (kinetic energy \ll rest mass energy)

so use non-relativistic formula

(easier than relativity but will get the same answer)

$$\begin{aligned} KE = \frac{1}{2} m v^2 \Rightarrow v &= \sqrt{\frac{2KE}{m}} = \sqrt{\frac{2KE \cdot c^2}{mc^2}} = c \sqrt{\frac{2KE}{m c^2}} \\ &= \sqrt{\frac{2 \times 1.78 \text{ eV}}{511 \times 10^3 \text{ eV}}} \cdot c = 2.6 \times 10^3 \text{ m/s} \\ &= 7.9 \times 10^5 \text{ m/s} \end{aligned}$$

Photon energy & momentum

$$E = hf \quad \text{and} \quad c = f\lambda \quad \text{so} \quad f = c/\lambda$$
$$\therefore E = \frac{hc}{\lambda}$$

Special Relativity: $E^2 = (pc)^2 + (m_0 c^2)^2$

from other experiments: $m_0 = 0$ for photons (γ s)

$$\text{so} \quad E = pc$$

$$p = E/c = \frac{hc}{\lambda}/c = \frac{h}{\lambda}$$

$$\boxed{\begin{array}{l} E = \frac{hc}{\lambda} \\ p = \frac{h}{\lambda} \end{array}} \quad \left. \begin{array}{l} E = pc \\ p = \frac{h}{\lambda} \end{array} \right\} \quad \text{for photons}$$

note: $hc = 6.63 \times 10^{-34} \text{ J-s} = 3 \times 10^8 \text{ m/s}$
 $= 1.989 \times 10^{-25} \text{ J-m} = \frac{1 \text{ eV}}{1.6 \times 10^{-19} \text{ J}}$
 $= 1.243 \times 10^{-6} \text{ eV-m}$
 $= 1.243 \text{ eV-}\mu\text{m}$
 $= 1243 \text{ eV-nm}$

This lets you convert from wavelength to energy

ex: $\lambda = 400 \text{ nm}$

$$E = hf = \frac{hc}{\lambda} = \frac{1243 \text{ eV-nm}}{400 \text{ nm}} = 3.1 \text{ eV}$$

ex: laser pointer w/output 5mW emits red light, $\lambda = 650 \text{ nm}$

$$\text{energy of each photon } E = \frac{hc}{\lambda} = \frac{1243 \text{ eV-nm}}{650 \text{ nm}} = 1.9 \text{ eV}$$

Compton scattering ? Compton effect

or Light scattering (off of other particles like electrons in air molecules)

Wave prediction:

\Rightarrow light w/ freq f hits a charged particle (e.g. molecule in air)

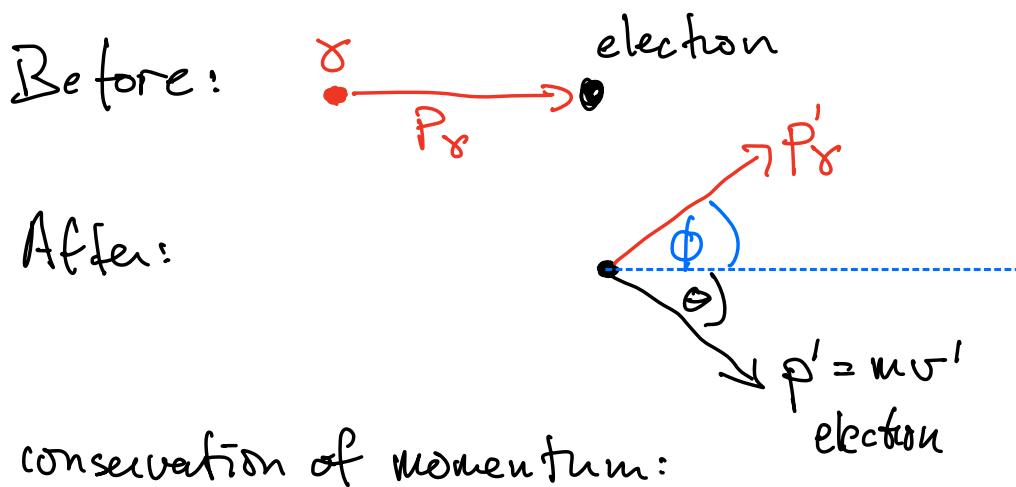
\Rightarrow charged particle will feel \vec{E} from light and will oscillate like an antenna

\Rightarrow that will send out EM waves from oscillating charged particle at same f

so wave picture says absorption & radiation are at same freq f

Photon model:

\Rightarrow photons are particles with energy $E_r = hf$



$$p_r = p'_r \cos \phi + p' \cos \theta \quad x \text{ component}$$

$$p_r - p'_r \cos \phi = p' \cos \theta$$

$$p'_r \sin \phi = p' \sin \theta \quad y \text{ component}$$

$$\text{so } (p_r - p'_r \cos \phi)^2 + p'^2 \sin^2 \phi = p'^2$$

$$p_r^2 + p'^2 \cos^2 \phi - 2p_r p'_r \cos \phi + p'^2 \sin^2 \phi = p'^2$$

$$so \quad p'^2 = p_\gamma^2 + p_\gamma'^2 - 2p_\gamma p_\gamma' \cos\phi \quad (1)$$

also conservation of energy:

$$Before: \quad E_{tot} = E_\gamma + mc^2$$

$$After: \quad E_{tot} = E_\gamma' + ((mc^2)^2 + (p'c)^2)^{1/2}$$

$$so \quad E_\gamma + mc^2 = E_\gamma' + ((mc^2)^2 + (p'c)^2)^{1/2}$$

$$(E_\gamma + mc^2 - E_\gamma')^2 = (mc^2)^2 + (p'c)^2$$

$$((E_\gamma - E_\gamma') + mc^2)^2 = (E_\gamma - E_\gamma')^2 + 2mc^2(E_\gamma - E_\gamma') + (mc^2)^2 \\ \simeq (mc^2)^2 + (p'c)^2$$

$$so \quad (E_\gamma - E_\gamma')^2 + 2mc^2(E_\gamma - E_\gamma') = (p'c)^2$$

for photons: $E^2 = (mc^2)^2 + (pc)^2$ but $m_0 = 0$ for γ 's

$$so \quad E = pc \quad (\text{photons only})$$

divide (2) by c^2 :

$$p'^2 = \frac{(E_\gamma - E_\gamma')^2}{c^2} + 2mc(E_\gamma - E_\gamma') \\ = (p_\gamma - p_\gamma')^2 + 2mc(p_\gamma - p_\gamma') \\ = p_\gamma^2 - 2p_\gamma p_\gamma' + p_\gamma'^2 + 2mc(p_\gamma - p_\gamma')$$

from (1)

$$p'^2 = p_\gamma^2 + p_\gamma'^2 - 2p_\gamma p_\gamma' \cos\phi$$

subtract:

$$0 = -2p_x p_x' + 2mc(p_x - p_x') + 2p_x p_x' \cos\phi$$

$$2p_x p_x' (1 - \cos\phi) = 2mc(p_x - p_x')$$

for photons: $p = \frac{E}{c} = \frac{hf}{c} = \frac{h}{\lambda} \quad (c = f\lambda)$

$$\text{so } \frac{2h^2(1-\cos\phi)}{\lambda\lambda'} = 2mc^2 \left(\frac{1}{\lambda} - \frac{1}{\lambda'} \right)$$

mult by $\frac{\lambda\lambda'}{2}$: $h^2(1-\cos\phi) = mc^2(\lambda' - \lambda)$

so
$$\boxed{\lambda' - \lambda = \frac{h}{mc}(1-\cos\phi)}$$

this predicts the shift in wavelength for scattering photons ("Compton scattering")
 \Rightarrow Verified by experiment!

note: $\frac{h}{mc} = \frac{hc}{mc^2} \Rightarrow$ units of length λ_c

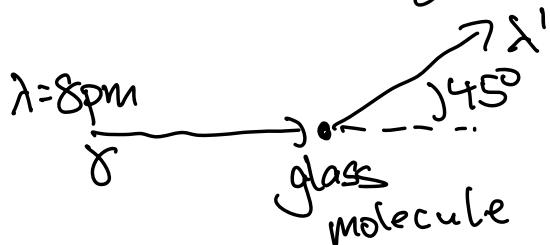
this is called the Compton wavelength
 \Rightarrow represents limit of precision for knowing a particle's position (more below)

$$\text{for electron } \lambda_c = \frac{hc}{mc^2} = \frac{1243 \text{ eV-nm}}{511 \times 10^3 \text{ eV}} = 2.43 \times 10^{-3} \text{ nm}$$

we usually use pm, pico-meters, $1 \text{ pm} = 10^{-12} \text{ m}$

so λ_c for electron is 2.43 pm

ex: $\lambda = 80 \text{ pm}$ x-ray scatters off of electrons in glass
what is λ' of scattered x-ray at 45° ?



Compton scattering of x-rays from electrons

$$\Delta\lambda = 2.43 \times (1 - \cos\theta)$$

$$= 2.43 \times (1 - \cos 45^\circ) = 0.71 \text{ pm}$$

$$\Delta\lambda = \lambda' - \lambda = 0.71 \text{ pm} \quad \text{so} \quad \lambda' = \lambda + 0.71 \\ = 80.71 \text{ pm}$$

note on how to determine whether relativistic or not

$$E = \gamma m_0 c^2$$

$$KE = (\gamma - 1) m_0 c^2$$

relativistic: $\beta \rightarrow 1, \gamma \text{ large}, E \gg m_0 c^2$

non-relativistic: $\beta \rightarrow 0, \gamma \rightarrow 1, \text{ so } KE \ll m_0 c^2$

200 4/23

Light intensity I in photon picture

For light, power = $\frac{\text{energy}}{\text{sec}}$

intensity = $\frac{\text{power}}{\text{area}}$

intensity $I = \text{flux, units}$ } $\frac{\text{Power}}{\text{area}} = \frac{\text{Energy/sec}}{\text{area}}$

is the rate of energy flow per time thru an area
What does this mean in photon picture?

let $R = \# \text{f's/sec}$ photons per second

if all the photons have $E = hf$ then
energy/sec (power) is

$$\frac{\text{energy}}{\text{sec}} = \frac{\text{photons}}{\text{sec}} \times \frac{\text{energy}}{\text{photon}}$$

$$P = R \times hf$$

$$\text{or } R = \frac{P}{hf} \# \text{ of photons/sec}$$

ex: laser pointer has 5mW power and $\lambda = 650\text{nm}$

$$R = \frac{P}{hf} = \frac{P}{hc/\lambda}$$

400 4/23

$$= \frac{5 \times 10^{-3} \text{ J/s}}{1243 \text{ eV/nm}} \times 650 \text{ nm} \times \frac{\text{keV}}{1.6 \times 10^{19} \text{ J}} \\ = 1.6 \times 10^{16} \text{ s/sec}$$

ex: sun intensity is $\sim 1400 \text{ W/m}^2$ at top of atmosphere

if all those γ 's were $\sim 400 \text{ nm}$, how many photons hit an area of 1 m^2 per sec?

$$1400 \frac{\text{W}}{\text{m}^2} \times 1 \text{ m}^2 = 1400 \text{ W} = 1400 \frac{\text{J}}{\text{s}}$$

$$\text{total energy in J} = \# \gamma's \times \frac{\text{energy}}{\text{photon}} = N_\gamma \cdot h f \\ = N_\gamma \frac{hc}{\lambda} = N_\gamma \cdot \frac{1243 \text{ eV} \cdot \text{nm}}{400 \text{ nm}}$$

$$J = N_\gamma \cdot 3.1 \text{ eV}$$

$$1400 \frac{\text{J}}{\text{s}} = \frac{N_\gamma \cdot 3.1 \text{ eV}}{\text{s}} \text{ so } \frac{N_\gamma}{\text{s}} = \frac{1400 \text{ J}}{3.1 \text{ eV}} \times \frac{\text{eV}}{1.6 \times 10^{19} \text{ J}}$$

$$= 2.8 \times 10^{21} \text{ J/s}$$

lots of γ 's per sec!

Atomic spectra

Heat material \rightarrow gives off light

\Rightarrow Can use diffraction grating to carefully measure wavelengths of emitted light

If substance is a gas of one particular element, light emitted has a very restricted set of wavelengths: atomic spectra

e.g.

$\lambda \rightarrow$

Big puzzle!

What was known about atoms \sim 1900:

1897: Thompson measured $\frac{q_e}{m}$ of atoms

1909: Millikan measures $q_e \Rightarrow$ this allowed determination of atomic masses

\Leftrightarrow mass atoms \gg mass all electrons

The nucleus

Up until 1910, theory of nucleus consisted of

1. electrons, negatively charged

⇒ cathode rays were readily observed

2. some positive charge

⇒ atoms observed to be neutral

"Plum pudding" model:

electrons (plums) embedded somehow in positively charged "pudding"

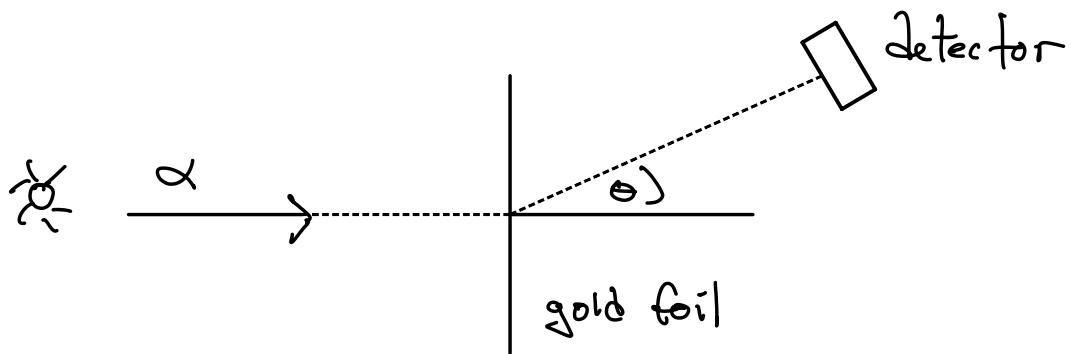
Ernest Rutherford, 1911, Univ of Manchester in England

had students do experiment:

particles called "alphas" bombarded target made of gold or silver

α 's: positive charge

come from naturally radioactive elements



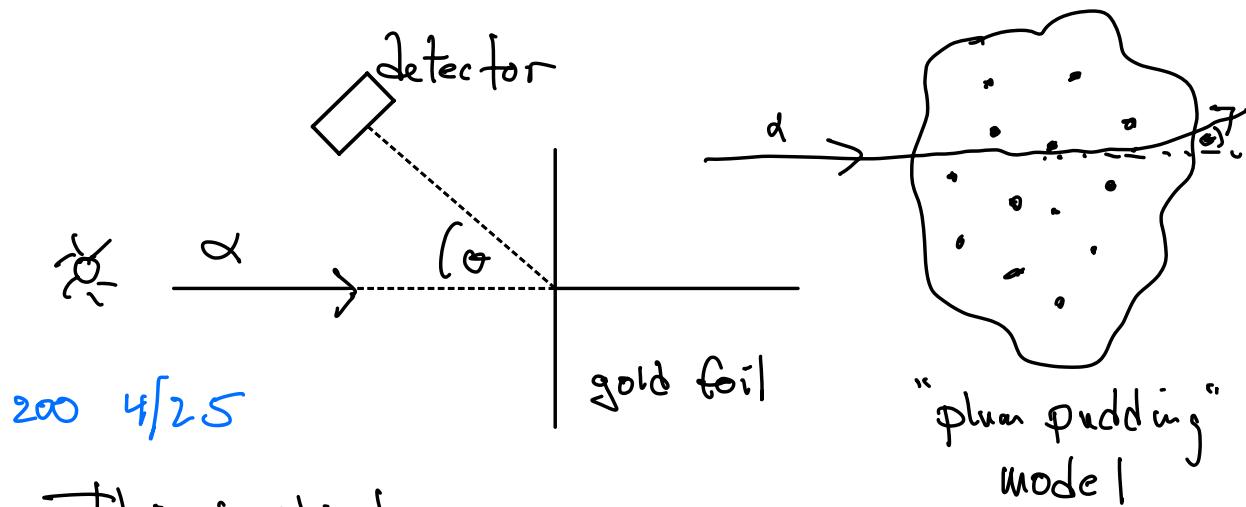
- α 's will penetrate gold foil if it's thin enough
- place detector at angle θ , record α hits
- vary θ

expectation:

- α 's would scatter weakly thru the "plum pudding" $\} \text{per charge}$
- electrons have very small mass compared to α 's ($\frac{m_e}{m_\alpha} \approx \frac{1}{7000}$) so all scattering is due to the positively charged part of the atom
- since atom is neutral, scattering will be when α is inside atom

\Rightarrow such scattering experiments allow probing internal structure of things

Result was surprising: some back scattering!



This implied:

- "plum pudding" was not correct
- atom must have "hard center"
 \Rightarrow solar system model, hard positively charged nucleus w/ electron in "orbit"

$$\text{ex: } M_\alpha = 6.64 \times 10^{-27} \text{ kg}$$

$$M_\alpha c^2 = 6.64 \times 10^{-27} \text{ kg} \times \left(3 \times 10^8 \frac{\text{m}}{\text{s}}\right)^2 \approx \frac{1 \text{ eV}}{1.6 \times 10^{-19} \text{ J}}$$

$$= 3.735 \times 10^9 \text{ eV} = 3.735 \text{ GeV}$$

$K_E \neq 0$ from radioactive Ra(226) is 4.7 MeV

since $KE \ll mc^2$ & are non-relativistic
so do not need relativity

$$\text{ex: } KE = 4.7 \text{ MeV} = \frac{1}{2} mv^2 = \frac{1}{2} mc^2 \beta^2$$

$$4.7 \times 10^6 \text{ eV} = \frac{1}{2} (3.735 \times 10^9 \text{ eV}) \cdot \beta^2$$

$$\beta = \sqrt{\frac{2 \times 4.7 \times 10^6}{3.735 \times 10^9}} = 0.0502 \ll 1$$

$$v = \beta c = 0.0502 \times 3 \times 10^8 \frac{\text{m}}{\text{s}} = 15.1 \times 10^6 \frac{\text{m}}{\text{s}}$$

Rutherford's theory: electrons are in "orbit"
around nucleus

Problems • that's like an antenna \rightarrow electrons in orbit should radiate energy and fall into nucleus

\Rightarrow but atoms are stable!

• as electrons spiral in, charge of atom should change

\Rightarrow it doesn't

• any emitted light should have continuous wavelengths

\Rightarrow atomic spectra are not continuous

Rutherford's "solar system" model is consistent with scattering experiment results
⇒ but not the rest of EM theory!

1913 Niels Bohr

- atomic spectra tell us that excited atoms emit light w/ specific wavelengths
so $E = \frac{hc}{\lambda} = hf$ must have specific (not continuous) energies

so atomic excitation must mean:

- excited atom has energy E_n (n is integer)
- de-excites, and emits λ of some frequency
- new energy is E_m

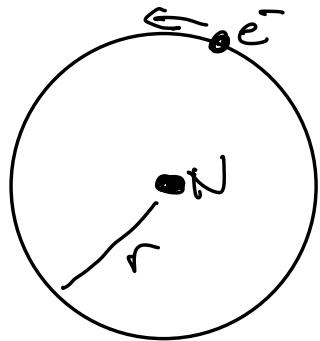
$$E_n - E_m = hf \text{ energy conservation}$$

⇒ heating atom drives it into high energy state
⇒ de-excite transitions back & emits λ

so energy levels of atoms must be quantized
⇒ this is revolutionary!!

Bohr model using quantization ideas

apply wave nature of electrons

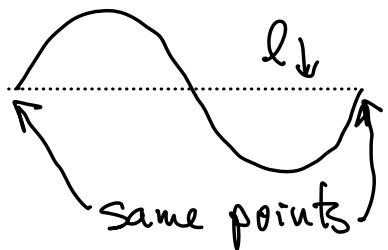


electron in orbit around nucleus

if electrons are in orbit w[radius r] then circumference $\ell = 2\pi r$

if electrons are waves then circumference has to be an integer number of wavelengths:

$$\ell = n \lambda_n = 2\pi r$$



this means radius is quantized:

$$2\pi r_n = n \lambda_n \Rightarrow \lambda_n = 2\pi r_n / n$$

and de Broglie holds: $p = \frac{h}{\lambda}$

so if $\lambda = \lambda_n$ then p is also quantized

$$p_n = m v_n = \frac{h}{\lambda_n} = \frac{h}{2\pi r_n / n} = \frac{n h}{2\pi r_n}$$

$$m v_n r_n = \frac{h n}{2\pi} = \tau_n \quad (\tau \equiv h/2\pi)$$

$m v_n r_n \Rightarrow$ angular momentum L_n

$$\boxed{L_n = n \tau} \quad \text{angular momentum is quantized}$$

angular acceleration: $\frac{m v^2}{r}$

Force due to EM attraction:

$$F_{EM} = \frac{1}{4\pi\epsilon_0} \frac{q_e q_n}{r_n^2} = \frac{m v^2}{r_n} \quad \left. \begin{array}{l} \text{centrifugal force on} \\ \text{electron} \end{array} \right\}$$

let $q_e = -1e$ electron

$q_n = +1e$ hydrogen

magnitude of force $F_{EM} = \frac{e^2}{4\pi\epsilon_0 r_n^2}$ inward (attracts)

this holds electron in orbit

centrifugal acceleration $a_c = \frac{v^2}{r_n}$

Centrifugal force $ma = \frac{mv^2}{r_n} = \frac{F_{EM}}{r_n}$ from EM attraction

$$\text{so } \frac{e^2}{4\pi\epsilon_0 r_n^2} = \frac{mv^2}{r_n}$$

$$\text{or } mv^2 r_n = \frac{e^2}{4\pi\epsilon_0} \quad \text{multiply both sides by } mr_n$$

$$\frac{m^2 v^2 r_n^2}{4\pi\epsilon_0} = \frac{mr_n e^2}{4\pi\epsilon_0}$$

$$mv\tau = p \cdot r = \text{angular momentum } L = mv\tau$$

$$\text{and } L = L_n = n\hbar \text{ from above}$$

$$\text{so } \frac{m^2 v^2 r_n^2}{4\pi\epsilon_0} = L^2 = n^2 \hbar^2 = \frac{mr_n e^2}{4\pi\epsilon_0}$$

$$\text{Solve for } r_n = n^2 \cdot \frac{4\pi\epsilon_0 \hbar^2}{me^2}$$

$$\text{multiply right side by } c^2/c^2$$

$$r_n = n^2 \cdot \frac{4\pi\epsilon_0 \hbar^2 c^2}{e^2 \cdot mc^2}$$

$$\hbar c = \frac{hc}{2\pi} = 1243 \text{ eV-nm} = 197.3 \text{ eV-nm}$$

$$mc^2 = 511 \text{ keV electron rest energy}$$

$\hbar c$ has units of Energy * Length
 $m c^2$ " " " Energy
 r_n " " " Length

so $\frac{e^2}{4\pi\epsilon_0\hbar c}$ has no units, is a dimensionless number

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N/C}$$

$$\text{so } \frac{e^2}{4\pi\epsilon_0\hbar c} = \frac{(1.6 \times 10^{-19} \text{ C})^2}{\frac{6.6 \times 10^{-34} \text{ J-s} \times 3 \times 10^8 \text{ m}}{2\pi}} \times 9 \times 10^9 \text{ N C}^2/\text{m}^2$$

$$= \frac{1}{137}$$

call this $\alpha = \frac{1}{137}$ "fine structure constant"

$$\text{so } r_n = n^2 \cdot \frac{\hbar c}{\alpha m_e c^2} \quad \hbar c = \frac{hc}{2\pi} = \frac{1243 \text{ eV-nm}}{2\pi}$$

$$\frac{\hbar c}{\alpha m_e c^2} = \frac{1973 \text{ eV-nm} \cdot 137}{511 \times 10^3 \text{ eV}} = 197.3 \text{ eV-nm}$$

$$= 0.053 \text{ nm} = 0.53 \text{ \AA} \quad (\text{Angstrom})$$

$$1 \text{ \AA} = \frac{1}{10} \mu\text{m}$$

define "Bohr radius" $a_0 = 0.53 \text{ \AA}$

then $r_n = n^2 a_0$ for hydrogen

ground state $n=1$ $r_1 = a_0$ radius of e^- in ground state

$$n=2 \quad r_2 = 4a_0$$

$$n=3 \quad r_3 = 9a_0$$

etc up to $n=\infty$ where electron is "free" (no longer bound to proton)

so angular momentum and radii of electron in H atom are quantized

\Rightarrow what about energy?

is electron relativistic?

$L_n = n\hbar = m\mathbf{v}r_n$ angular momentum
in ground state $r_1 = 1^2 \cdot a_0 = 0.53 \text{ \AA}$

$$\text{write } \mathbf{v} = \mathbf{r}/t$$

$$\text{and so } \mathbf{v}c = mc \cdot \mathbf{v}r_1$$

$$= mc^2 \cdot \frac{v}{c} \cdot r_1$$

$$\text{so } \frac{v}{c} = \frac{mc}{m^2 r_1} = \frac{197.3 \text{ eV} \cdot \text{nm}}{511 \times 10^3 \text{ eV} \cdot 0.053 \text{ nm}}$$

$$= 7.3 \times 10^{-3} \text{ much less than 1}$$

non relativistic

energy $E = \underbrace{KE}_{\frac{1}{2}mv^2} + \underbrace{PE}_{EM \text{ potential energy}}$

$$KE = \frac{1}{2}mv^2 = \frac{1}{2} \frac{mv^2}{r} \cdot r$$

but we see above $\frac{mv^2}{r} = F_{EM} = \frac{e^2}{4\pi\epsilon_0 r^2}$

$$\text{so } KE = \frac{1}{2} \frac{e^2}{4\pi\epsilon_0 r_n^2} \cdot r_n = \frac{1}{2} \frac{e^2}{4\pi\epsilon_0 r_n}$$

$$PE = \frac{-e^2}{4\pi\epsilon_0 r_n} \quad (\text{last semester})$$

$$\text{so } E = KE + PE = \frac{1}{2} \frac{e^2}{4\pi\epsilon_0 r_n} - \frac{e^2}{4\pi\epsilon_0 r_n}$$

$$= \frac{-e^2}{2 \cdot 4\pi\epsilon_0 r_n}$$

substitute $r_n = n^2 \cdot \frac{hc}{\alpha mc^2}$

$$E = - \frac{-e^2}{2 \cdot 4\pi\epsilon_0} \frac{\alpha mc^2}{n^2 hc} = - \underbrace{\frac{1}{2} \frac{e^2}{4\pi\epsilon_0 hc}}_{\alpha} \frac{\alpha \cdot mc^2}{n^2}$$

$$E_n = \frac{1}{2} \frac{\alpha^2 mc^2}{n^2}$$

$$\frac{\alpha^2 m c^2}{2} = \frac{1}{2} \cdot \left(\frac{1}{137} \right)^2 \cdot 5 \text{H} \times 10^3 \text{eV} = 13.6 \text{eV}$$

note $13.6 \text{eV} \ll m_e c^2$ so non relativity OK

$$\Rightarrow E_n = -\frac{13.6 \text{eV}}{n^2}$$

400 4/28

$E_n < 0$ because it takes energy to free the electron

need 13.6eV added to hydrogen to free electron (and the liberated electron will have no KE!)

add more than 13.6 and e^- will have KE
13.6 is the work function of hydrogen!

lowest energy is called the "ground state"

ex: atomic spectra of some element has 3 longest wavelengths: 1240 nm, 620 nm, 484 nm

This means there are 3 transitions

$$\Delta E_0, \Delta E_1, \Delta E_2$$

let $E_0 = 0.0\text{eV}$

$\Delta E = hf = \frac{hc}{\lambda}$ so 1240 nm has smallest energy transition

$$\Delta E_0 = \frac{hc}{1240\text{nm}} = \frac{1243\text{eV-nm}}{1240\text{nm}} \approx 1\text{eV}$$

$$\Delta E_1 = \frac{hc}{620\text{nm}} = \frac{1243\text{eV-nm}}{620\text{nm}} \approx 2\text{eV}$$

$$\Delta E_2 = \frac{hc}{414\text{nm}} = \frac{1243\text{eV-nm}}{414\text{nm}} \approx 3\text{eV}$$

what fits: $E_0 = \text{ground state} = 0.0\text{eV}$

transition from $E_1 \rightarrow E_0$

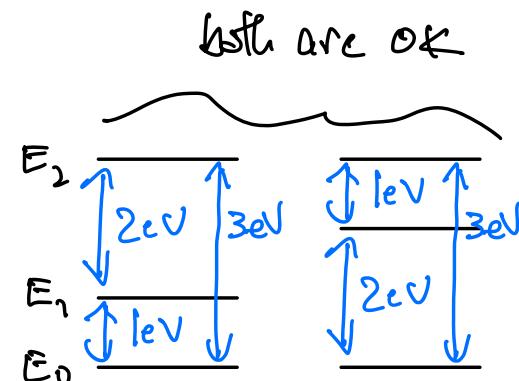
$$E_2 \rightarrow E_0$$

$$E_2 \rightarrow E_1$$

$$E_2 \rightarrow E_0 = E_2 \rightarrow E_1 + E_1 \rightarrow E_0$$

$$\text{so } 3\text{eV} = 2\text{eV} + 1\text{eV}$$

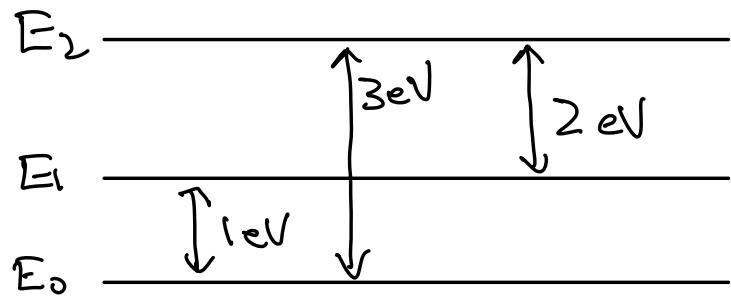
$$\text{or } 3\text{eV} = 1\text{eV} + 2\text{eV}$$



break ambiguity by measuring what γ 's can be absorbed by ground state

ex: say you measure that ground state can change by absorbing 1240 nm (1eV) or 414 nm (3eV) & but not 620 nm (2eV)

\Rightarrow this tells you the energy levels look like this



\Rightarrow the 620nm γ has no effect on atom in ground state

But if you excite atom with 414nm γ , it can go into E_2 state and decay $\rightarrow E_1$ emitting 620nm γ .

Bohr theory recap

1. Atoms have "states"
2. each state has a different energy, radius of electron, angular momentum
3. states are "quantized", not continuous
"n" for each state, $n=1$ is ground state
quantized properties

$$L_n = n\hbar \quad \text{angular momentum, } \hbar = \frac{h}{2\pi}$$

$$r_n = n^2 a_0 \quad \text{radius } a_0 \text{ is Bohr radius}$$

$$a_0 = 0.529 \text{ \AA} = 0.0529 \text{ nm}$$

$$a_0 = hc/dm_e c^2 \quad m_e = \text{electron mass}$$

$$E_n = -\frac{13.6 \text{ eV}}{n^2}$$

Atomic spectra:

ground state H is $E_1 = -13.6 \text{ eV}$

1st excited state $E_2 = -\frac{13.6 \text{ eV}}{2^2} = -3.4 \text{ eV}$

to excite H from E_1 to E_2 add energy

$$E_{in} = E_2 - E_1 = -3.4 - (-13.6) = 10.2 \text{ eV}$$

to excite using photon, $E_{in} = E_\gamma = \frac{hc}{\lambda}$

$$\text{so need photon } \lambda = \frac{hc}{E_\gamma} = \frac{1243 \text{ nm}}{10.2 \text{ eV}}$$

$$= 121.9 \text{ nm (UV } \delta)$$

⇒ Any photon of wavelength λ that satisfies:

$$\frac{hc}{\lambda} = E_m - E_n \quad m, n \text{ integers}$$

will be absorbed by atom

Emission: can happen when atom goes from n to m state ($n > m$)

transitions: $\frac{hc}{\lambda} = E_{n_i} - E_{n_f} \quad n_f < n_i \quad (\text{eg. } 2 \rightarrow 1)$

$$= -\frac{13.6 \text{ eV}}{n_i^2} + \frac{13.6 \text{ eV}}{n_f^2}$$

$$= 13.6 \text{ eV} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

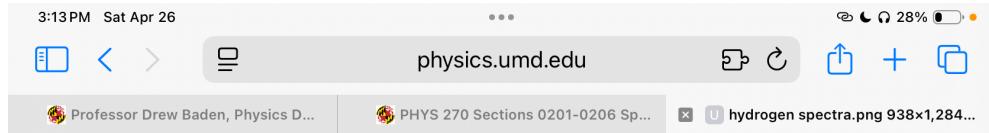
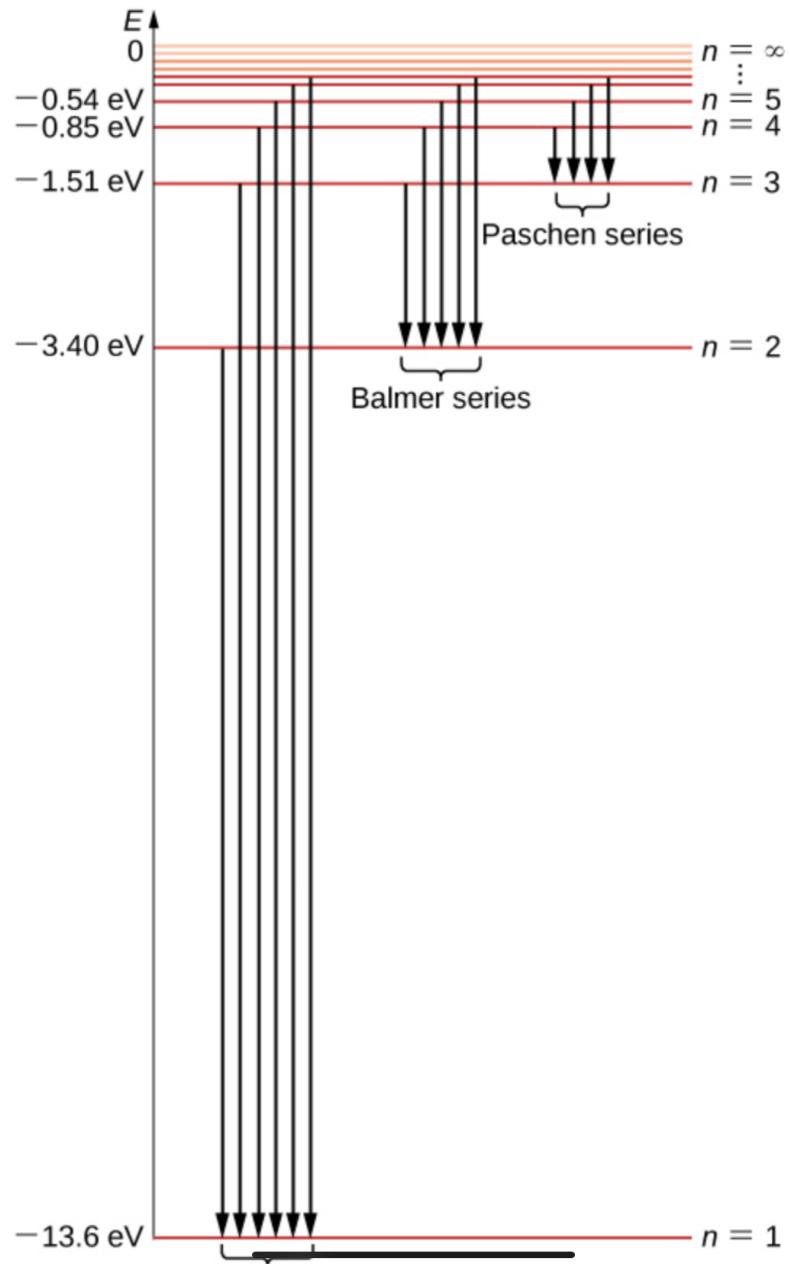
write $\frac{1}{\lambda} = \frac{13.6}{hc} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$

$$\frac{13.6}{hc} = \frac{13.6 \text{ eV}}{1243 \text{ eV} \cdot \text{nm}} = 1.09 \times 10^{-2} \text{ nm}^{-1}$$

define $R = 1.09 \times 10^{-2} \text{ nm}^{-1}$ "Rydberg constant"

then $\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$ is wavelength of δ emitted

when it transitions from n_i to n_f



Waves & Particles?

Light diffracts & interferes \Rightarrow waves

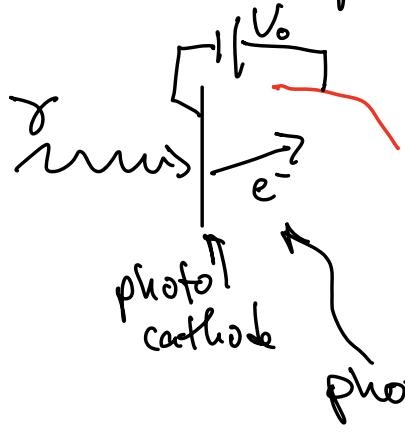
Light consists of photons \Rightarrow particles?

Which is correct? Both

If you do an experiment to measure wave-like properties, it will behave like a wave.

Same for particle-like properties

Photo-multiplier tube: detects photons:



electron is accelerated to 1st stage, which is at a $+V_0$ potential

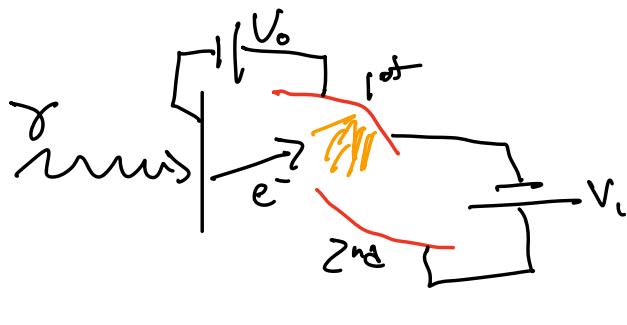
photoelectric effect

e^- gains energy eV_0 and hits plate

this kicks off more electrons that share eV_0 energy

\Rightarrow next place 2nd stage w/ potential V_1 above 1st

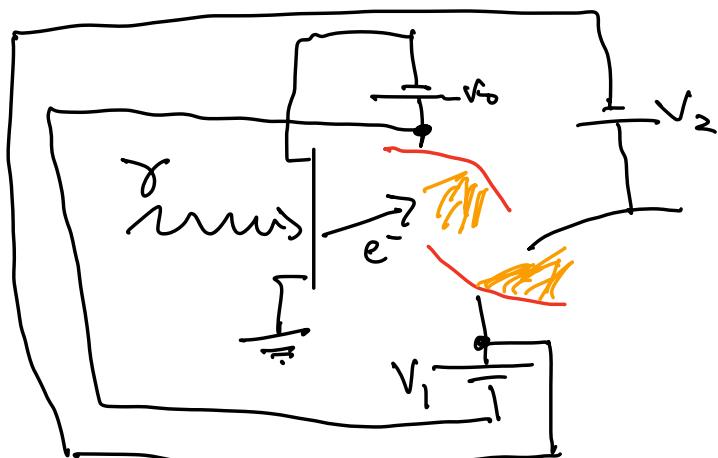
accelerate electrons from 1st stage to 2nd stage



secondary electrons
each gain energy
 eV_1 and hit
2nd stage

2nd stage produces tertiary electrons that
head to 3rd stage that is at V_2 above

3rd stage



ect. Each stage produces $N \times$ previous stage.

if you have n stages, final current of electrons:

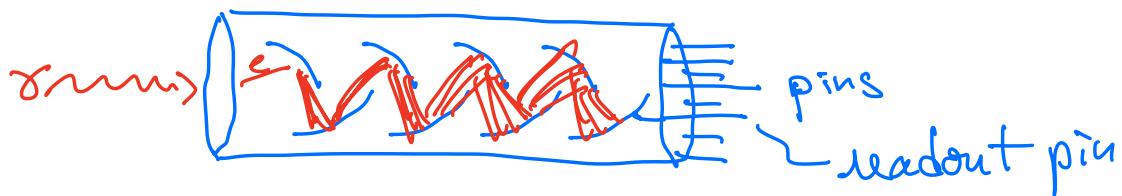
$$P = \frac{\Delta Q}{\Delta t} = \frac{N^n \cdot e}{\Delta t}$$

these are fast, $\Delta t \approx 10 \text{ ns}$

if you start w/ 1 photon and have $N=10$ produced at each stage in 10 ns :

$$I = 10^{10} \cdot \frac{1.6 \times 10^{-19} C}{10 \times 10^{-9} \text{ s}} = 0.16 \text{ Amps}$$

so it's a photo-multiplier



- Built into cylindrical form factor
- pins at end are for various stage voltages and final stage readout pin

that's why it's called a photo-multiplier tube (PMT)
 can be used to detect individual photons

Matter waves

light is a wave with f, λ wave properties

Planck & Einstein: $E = hf$ energy

\Rightarrow looks like a particle that we call a "photon"

relativity: $E^2 = (pc)^2 + (m_0 c^2)^2$

mass of photon = 0 experimentally

$$\text{so } E = pc = hf$$

$$p = \frac{hf}{c} = \frac{h}{\lambda}$$

Compton scattering assumes light is a particle and experiments confirm Compton scattering

so a wave = a particle

$$E = hf = \frac{h}{2\pi} \cdot 2\pi f = \hbar \omega \quad \left. \right\} \hbar = \frac{h}{2\pi}$$

$$p = \frac{h}{\lambda} = \frac{2\pi}{\lambda} \cdot \frac{h}{2\pi} = \hbar k \quad \left. \right\} \hbar = \frac{h}{2\pi}$$

$$\hbar c = \frac{hc}{2\pi} = \frac{1243 \text{ eV} \cdot \text{nm}}{2\pi} = 197.8 \text{ eV} \cdot \text{nm}$$

Does a particle w/ mass also have wave properties?

yes! then if a particle has m, E, p

then $f = \frac{E}{h}$ & $\lambda = \frac{h}{p}$ for particles (electrons, protons, ...)

here E & p are the usual energy & momentum (and can be relativistic or not)

ex: baseball mass $\sim 145 \text{ gm}$

$$\text{velocity} \sim 90 \text{ mph} \times \frac{0.447 \text{ m/s}}{1 \text{ mph}} = 40.2 \text{ m/s}$$

$v \ll c$ so use non-relativistic

$$p = mv = 0.145 \text{ kg} \times 40.2 \text{ m/s} = 5.83 \text{ kg m/s}$$

$$\lambda = \frac{h}{p} = \frac{6.63 \times 10^{-34} \text{ J-s}}{5.83 \text{ kg m/s}} = 1.14 \times 10^{-34} \text{ m}$$

too small to measure!

so wave properties are irrelevant for "classical" every day experience

ex: electron has $E = 2 \text{ MeV} > m_0 c^2$

$$\begin{aligned} E = hf &= \frac{hc f}{c} \rightarrow f = \frac{E \cdot c}{hc} \\ &= \frac{2 \times 10^6 \text{ eV}}{1243 \text{ eV-nm}} \times 3 \times 10^8 \frac{\text{m}}{\text{s}} \times \frac{1 \text{ nm}}{10^{-9} \text{ m}} \end{aligned}$$

$$= 4.8 \times 10^{20} \text{ Hz!}$$

electron mass $= m_0 c^2 = 0.511 \text{ eV} < E$ so use relativity to get electron momentum

use $E^2 = (pc)^2 + (m_0 c^2)^2$

$$pc = \sqrt{E^2 - (m_0 c^2)^2} = \sqrt{(2 \text{ MeV})^2 - (0.511 \text{ MeV})^2}$$

$$= 1.93 \text{ MeV}$$

$$\lambda = \frac{h}{p} = \frac{hc}{pc} = \frac{1243 \text{ eV-nm}}{1.93 \times 10^6 \text{ eV}} = 6.4 \times 10^{-4} \text{ nm}$$

$$= 0.64 \times 10^{-3} \text{ nm}$$

$$= 0.64 \text{ pm}$$

Note: for particles: $E = hf$

$$p = \frac{h}{\lambda}$$

$$\text{so } \frac{E}{p} = \frac{hf}{h/\lambda} = \lambda f = v \text{ and } \frac{E}{pc} = \frac{v}{c} = \beta$$

but if you write $E = \gamma m_0 c^2$

$$pc = \gamma \beta m_0 c^2$$

$$\text{then } \frac{pc}{E} = \beta \text{ and } \frac{E}{pc} = \frac{1}{\beta}$$

so which is correct?

this brings up difference between the

v_g = group velocity

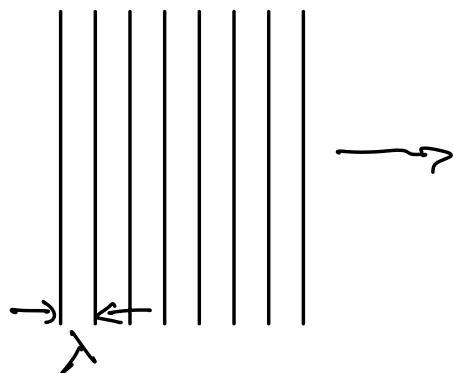
v_p = phase velocity

v_g carries energy, not v_p so $\frac{E}{pc} = v_g$ group velocity
and $v_p = \lambda f$ phase velocity

Waves vs particles

waves have wave length $k = \frac{2\pi}{\lambda}$

wave front :



has definite wavelength

but is not localized \rightarrow wave exists
along infinite wave front

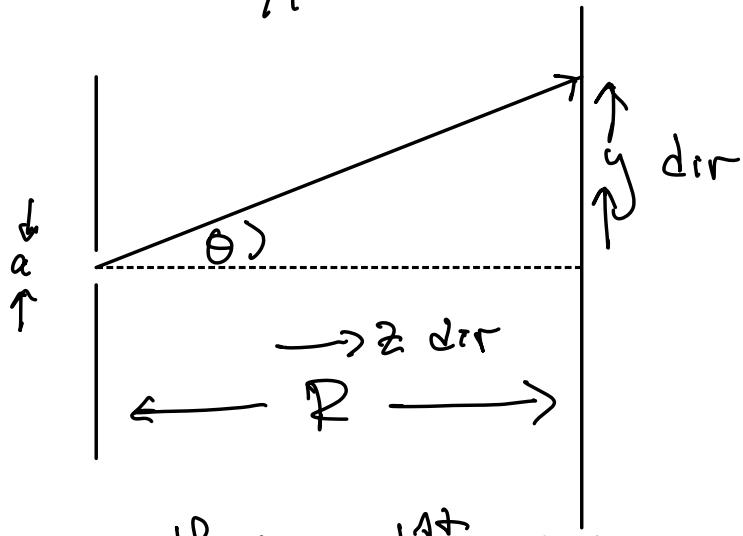
particles have position coordinates

\Rightarrow but a particle not moving

does not have a definite wavelength

\Rightarrow this implies that in wave-particle picture there is a relationship
between the degree that you can
know position: uncertainty in $x \Rightarrow \Delta x$
and momentum: " " " $p \Rightarrow \Delta p$
(thus $p = h/x$ relation)

Single slit diffraction is wave/particle



From wave theory: 1st minimum is at
 $a \sin \theta_1 = \lambda$

uncertainty in wave position in slit:

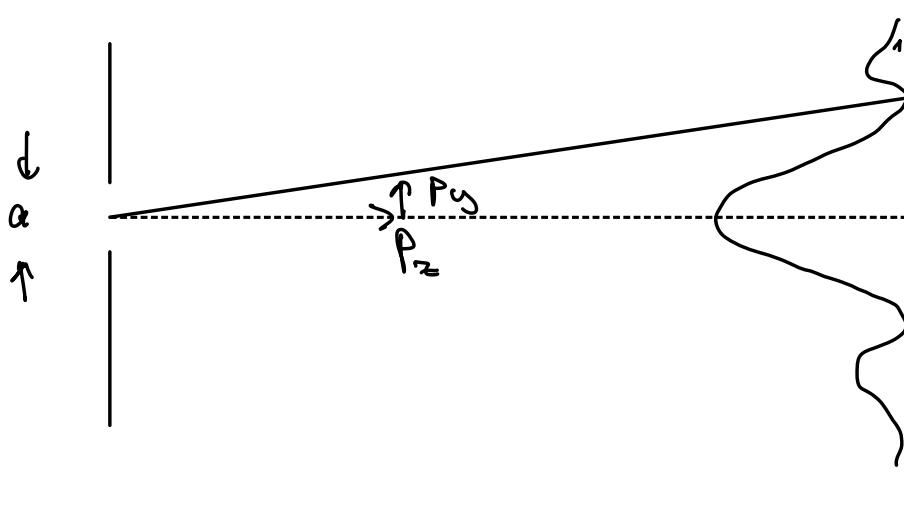
$$\Delta y = a$$

wave has a momentum along z direction:

$$p_z = \frac{h}{\lambda} = \hbar k$$

for photon to get to 1st min angle,
it would have to pick up some
unknown momentum Δp_y

$$\text{and can write } \sin \theta \sim \tan \theta = \frac{\Delta p_y}{p_z}$$



$$\text{so } \Delta x \sin \theta \rightarrow \Delta y \cdot \frac{\Delta p_y}{p_z} = \lambda$$

$$\text{or } \Delta y \Delta p_y \sim \lambda p_z = \lambda \frac{h}{x} = h$$

$$\Delta y \Delta p_y \sim h$$

\Rightarrow when you do the calculation using more modern techniques of quantum mechanics you get:

$$\Delta x \Delta p \geq \hbar/2$$

Δx is "uncertainty" in position

Δp " " " momentum along x

this kind of relationship is common
in Fourier analysis of signals

\Rightarrow for wave/particles, it all has to do with the idea
that a wave is not a localized thing
but a particle is

current theory on what is a matter wave:

wave function for matter wave: $\psi(x, t)$

this wave can be a simple periodic oscillation:

$$\psi(x, t) = A \sin(kx - \omega t) \text{ for a free particle}$$

it describes a particle w/ wavelength $k = \frac{2\pi}{\lambda}$
and freq $\omega = 2\pi f$

- but what is oscillating?

$\Rightarrow \psi$ is the "amplitude" for finding the particle at position x , at time t
 $\Rightarrow |\psi|^2$ is the probability of finding the particle there & then

- where is the particle if it has a wavelength and frequency?

\Rightarrow that's where uncertainty relation comes in:

if you constrain particle to be in region Δx ,
then you cannot know its momentum precisely

$$\Rightarrow \Delta p = \frac{\hbar/2}{\Delta x} \text{ so as } \Delta x \rightarrow 0, \Delta p \rightarrow \infty \text{ and}$$
$$\text{as } \Delta x \rightarrow \infty, \Delta p \rightarrow 0$$

Heisenberg $\Delta x \Delta p_x \geq \hbar/2$

Very fundamental to QM:

\Rightarrow you can not (in principle) know precisely both position and momentum

also there's an uncertainty relation for energy:

$$\Delta E \Delta t \geq \hbar/2$$

\Rightarrow cannot localize in time and know energy precisely

The more localized in position, the less definite the momentum

& Vice versa

But the theory also says more:

- The position & momentum do not exist until measured!
- Only the probability for having some value of position and momentum exist
- The wave equation tells you this probability

It is not that you don't know position?
momentum

⇒ it's that a definite position is a definite momentum do not exist

reality at subatomic (quantum) level:
the only thing that exists is probability

⇒ This might seem odd or wrong but all technology is based on it

Schrodinger's Cat

put cat in box w/ radioactive source

QM says:

1. cannot predict when source will decay
2. can predict probability as function of time that has decayed
3. can make many measurements, construct probability, compare w/ theory - agrees

4. before measuring, decay is not a valid concept \rightarrow particle is in a superposition of "decayed" and "not decayed"
 - \Rightarrow state of decayed or not only is real once you make the measurement
 - \Rightarrow this is called "collapse of wave function"

Schrodinger cat \rightarrow we still don't agree about it!